Lep-KO **Nomenclature** B6;129S*-Lep*^{tm1Smoc} **Cat. NO.** NM-KO-00034 **Strain State** Embryo cryopreservation ## **Gene Summary** | Gene Symbol
Lep | Synonyms | ob; obese | |--------------------|----------------|--------------------| | | NCBI ID | <u>16846</u> | | | MGI ID | 104663 | | | Ensembl ID | ENSMUSG00000059201 | | | Human Ortholog | LEP | # **Model Description** Exon 2 was replaced by Neo cassette. **Research Application**: Insulin resistance, obesity, and type 2 diabetes etc. *Literature published using this strain should indicate: Lep-KO mice (Cat. NO. NM-KO-00034) were purchased from Shanghai Model Organisms Center, Inc.. #### **Disease Connection** | Abdominal Obesity-
Metabolic Syndrome | Phenotype(s) | MGI:4429407 | |--|--------------|--| | | Reference(s) | Xu A, Liu J, Liu P, Jia M, Wang H, Tao L,
Mitochondrial translocation of Nur77
induced by ROS contributed to
cardiomyocyte apoptosis in metabolic
syndrome. Biochem Biophys Res Commun.
2014 Apr 18;446(4):1184-9 | | Abdominal Obesity-
Metabolic Syndrome 1 | Phenotype(s) | MGI:2654709 | | | Reference(s) | Ikels K, Kuschel S, Fischer J, Kaisers W,
Eberhard D, Ruther U, FTO is a relevant
factor for the development of the metabolic
syndrome in mice. PLoS One.
2014;9(8):e105349 | | Non-Alcoholic Fatty Liver
Disease | Phenotype(s) | MGI:5807153 | |--------------------------------------|--------------|---| | | Reference(s) | Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, Fromenty B, Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol. 2011 Dec;92(6):413-21 | | Obesity | Phenotype(s) | MGI:3623749 | | | Reference(s) | Barouch LA, Berkowitz DE, Harrison RW, O'Donnell CP, Hare JM, Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation. 2003 Aug 12;108(6):754-9 | | Type 2 Diabetes Mellitus | Phenotype(s) | MGI:5428893 | | | Reference(s) | Clee SM, Nadler ST, Attie AD, Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am J Ther. 2005 Nov-Dec;12(6):491-8 | ## **Validation Data** Fig1. Body weight and Blood glucose monitoring of ob/ob mice. Fig2. Evaluation of Oral glucose tolerance test (OGTT) of female ob/ob mice. Abbr. HO, homozygous; WT, wild type. **, P ≤ 0.01. Note. The tested ob/ob and C57BL/6 mice were 6 weeks old. Fig3. Detection of insulin levels in serum by ELISA. Abbr. Hom, homozygous; HE, heterozygous; WT, wild type. Note. The tested ob/ob and C57BL/6 mice were 20 weeks old. Fig4. H&E staining of the subcutaneous adipose tissue (SAT) in ob/ob mice. Abbr. HO, homozygous; WT, wild type; WAT, white adipose tissue; BAT, brown adipose tissue. Note. The tested ob/ob and C57BL/6 mice were 20 weeks old. Scale bar, 200 μ m; magnification, \times 20. Fig5. Representative pictures of pancreas in ob/ob mice. These results suggested the inflammatory cell infiltration of the pancreas in ob/ob mice. Abbr. HO, homozygous; WT, wild type. Note. The tested ob/ob and C57BL/6 mice were 20 weeks old. Scale bar, 200 μ m; magnification, \times 10.